Locality of symmetries generated by nonhereditary, inhomogeneous, and time-dependent recursion operators: a new application for formal symmetries
نویسنده
چکیده
Using the methods of the theory of formal symmetries, we obtain new easily verifiable sufficient conditions for a recursion operator to produce a hierarchy of local generalized symmetries. An important advantage of our approach is that under certain mild assumptions it allows to bypass the cumbersome check of hereditariness of the recursion operator in question, what is particularly useful for the study of symmetries of newly discovered integrable systems. What is more, unlike the earlier work, the homogeneity of recursion operators and symmetries under a scaling is not assumed as well. An example of nonhereditary recursion operator generating a hierarchy of local symmetries is presented.
منابع مشابه
The Symmetries of Equivalent Lagrangian Systems and Constants of Motion
In this paper Mathematical structure of time-dependent Lagrangian systems and their symmetries are extended and the explicit relation between constants of motion and infinitesimal symmetries of time-dependent Lagrangian systems are considered. Starting point is time-independent Lagrangian systems ,then we extend mathematical concepts of these systems such as equivalent lagrangian systems to th...
متن کاملNew Solutions for Fokker-Plank Equation of Special Stochastic Process via Lie Point Symmetries
In this paper Lie symmetry analysis is applied in order to find new solutions for Fokker Plank equation of Ornstein-Uhlenbeck process. This analysis classifies the solutions format of the Fokker Plank equation by using the Lie algebra of the symmetries of our considered stochastic process.
متن کاملThe Structure of Cosymmetries and a Simple Proof of Locality for Hierarchies of Symmetries of Odd Order Evolution Systems
It is well known that members of integrable hierarchies of systems of partial differential equations (PDEs) usually have an infinite number of common conservation laws, see e.g. [1–4]. The latter are typically extracted from the Lax pair or zero curvature representation for the system in question, cf. e.g. [4]. On the other hand, one often has to deal with the inverse problem, that is, to check...
متن کاملReduction of Differential Equations by Lie Algebra of Symmetries
The paper is devoted to an application of Lie group theory to differential equations. The basic infinitesimal method for calculating symmetry group is presented, and used to determine general symmetry group of some differential equations. We include a number of important applications including integration of ordinary differential equations and finding some solutions of partial differential equa...
متن کاملHigher Symmetries of the Elliptic Euler-darboux Equation
We find a remarkable subalgebra of higher symmetries of the elliptic Euler-Darboux equation. To this aim we map such equation into its hyperbolic analogue already studied by Shemarulin. Taking into consideration how symmetries and recursion operators transform by this complex contact transformation, we explicitly give the structure of this Lie algebra and prove that it is finitely generated. Fu...
متن کامل