Locality of symmetries generated by nonhereditary, inhomogeneous, and time-dependent recursion operators: a new application for formal symmetries

نویسنده

  • A. Sergyeyev
چکیده

Using the methods of the theory of formal symmetries, we obtain new easily verifiable sufficient conditions for a recursion operator to produce a hierarchy of local generalized symmetries. An important advantage of our approach is that under certain mild assumptions it allows to bypass the cumbersome check of hereditariness of the recursion operator in question, what is particularly useful for the study of symmetries of newly discovered integrable systems. What is more, unlike the earlier work, the homogeneity of recursion operators and symmetries under a scaling is not assumed as well. An example of nonhereditary recursion operator generating a hierarchy of local symmetries is presented.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Symmetries of Equivalent Lagrangian Systems and Constants of Motion

In this paper Mathematical structure of time-dependent Lagrangian systems and their symmetries are extended and the explicit relation between constants of motion and infinitesimal symmetries of time-dependent Lagrangian systems are considered. Starting point is time-independent Lagrangian systems ,then we extend mathematical concepts of these systems such as equivalent lagrangian systems to th...

متن کامل

New Solutions for Fokker-Plank Equation of‎ ‎Special Stochastic Process via Lie Point Symmetries

‎In this paper Lie symmetry analysis is applied in order to find new solutions for Fokker Plank equation of Ornstein-Uhlenbeck process‎. ‎This analysis classifies the solutions format of the Fokker Plank equation by using the Lie algebra of the symmetries of our considered stochastic process‎.

متن کامل

The Structure of Cosymmetries and a Simple Proof of Locality for Hierarchies of Symmetries of Odd Order Evolution Systems

It is well known that members of integrable hierarchies of systems of partial differential equations (PDEs) usually have an infinite number of common conservation laws, see e.g. [1–4]. The latter are typically extracted from the Lax pair or zero curvature representation for the system in question, cf. e.g. [4]. On the other hand, one often has to deal with the inverse problem, that is, to check...

متن کامل

Reduction of Differential Equations by Lie Algebra of Symmetries

The paper is devoted to an application of Lie group theory to differential equations. The basic infinitesimal method for calculating symmetry group is presented, and used to determine general symmetry group of some differential equations. We include a number of important applications including integration of ordinary differential equations and finding some solutions of partial differential equa...

متن کامل

Higher Symmetries of the Elliptic Euler-darboux Equation

We find a remarkable subalgebra of higher symmetries of the elliptic Euler-Darboux equation. To this aim we map such equation into its hyperbolic analogue already studied by Shemarulin. Taking into consideration how symmetries and recursion operators transform by this complex contact transformation, we explicitly give the structure of this Lie algebra and prove that it is finitely generated. Fu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003